Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
BMC Womens Health ; 24(1): 213, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566121

RESUMO

BACKGROUND: Cuproptosis is a newly identified form of unprogrammed cell death. As a pivotal metabolic regulator, glutaminase (GLS) has recently been discovered to be linked to cuproptosis. Despite this discovery, the oncogenic functions and mechanisms of GLS in various cancers are still not fully understood. METHODS: In this study, a comprehensive omics analysis was performed to investigate the differential expression levels, diagnostic and prognostic potential, correlation with tumor immune infiltration, genetic alterations, and drug sensitivity of GLS across multiple malignancies. RESULTS: Our findings revealed unique expression patterns of GLS across various cancer types and molecular subtypes of carcinomas, underscoring its pivotal role primarily in energy and nutrition metabolism. Additionally, GLS showed remarkable diagnostic and prognostic performance in specific cancers, suggesting its potential as a promising biomarker for cancer detection and prognosis. Furthermore, we focused on uterine corpus endometrial carcinoma (UCEC) and developed a novel prognostic model associated with GLS, indicating a close correlation between GLS and UCEC. Moreover, our exploration into immune infiltration, genetic heterogeneity, tumor stemness, and drug sensitivity provided novel insights and directions for future research and laid the foundation for high-quality verification. CONCLUSION: Collectively, our study is the first comprehensive investigation of the biological and clinical significance of GLS in pan-cancer. In our study, GLS was identified as a promising biomarker for UCEC, providing valuable evidence and a potential target for anti-tumor therapy. Overall, our findings shed light on the multifaceted functions of GLS in cancer and offer new avenues for further research.


Assuntos
Carcinoma , Glutaminase , Humanos , Glutaminase/genética , Multiômica , Pesquisa , Biomarcadores
2.
Eur J Med Res ; 29(1): 161, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475836

RESUMO

BACKGROUND: In cancer patients receiving immune checkpoint inhibitors (ICIs), there is emerging evidence suggesting a correlation between gut microbiota and immune-related adverse events (irAEs). However, the exact roles of gut microbiota and the causal associations are yet to be clarified. METHODS: To investigate this, we first conducted a univariable bi-directional two-sample Mendelian randomization (MR) analysis. Instrumental variables (IVs) for gut microbiota were retrieved from the MiBioGen consortium (18,340 participants). GWAS summary data for irAEs were gathered from an ICIs-treated cohort with 1,751 cancer patients. Various MR analysis methods, including inverse variance weighted (IVW), MR PRESSO, maximum likelihood (ML), weighted median, weighted mode, and cML-MA-BIC, were used. Furthermore, multivariable MR (MVMR) analysis was performed to account for possible influencing instrumental variables. RESULTS: Our analysis identified fourteen gut bacterial taxa that were causally associated with irAEs. Notably, Lachnospiraceae was strongly associated with an increased risk of both high-grade and all-grade irAEs, even after accounting for the effect of BMI in the MVMR analysis. Akkermansia, Verrucomicrobiaceae, and Anaerostipes were found to exert protective roles in high-grade irAEs. However, Ruminiclostridium6, Coprococcus3, Collinsella, and Eubacterium (fissicatena group) were associated with a higher risk of developing high-grade irAEs. RuminococcaceaeUCG004, and DefluviitaleaceaeUCG011 were protective against all-grade irAEs, whereas Porphyromonadaceae, Roseburia, Eubacterium (brachy group), and Peptococcus were associated with an increased risk of all-grade irAEs. CONCLUSIONS: Our analysis highlights a strong causal association between Lachnospiraceae and irAEs, along with some other gut microbial taxa. These findings provide potential modifiable targets for managing irAEs and warrant further investigation.


Assuntos
Clostridiales , Microbioma Gastrointestinal , Neoplasias , Humanos , Análise da Randomização Mendeliana , Imunoterapia
3.
J Transl Med ; 22(1): 257, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461288

RESUMO

BACKGROUND: Neural Tube Defects (NTDs) are congenital malformations of the central nervous system resulting from the incomplete closure of the neural tube during early embryonic development. Neuroinflammation refers to the inflammatory response in the nervous system, typically resulting from damage to neural tissue. Immune-related processes have been identified in NTDs, however, the detailed relationship and underlying mechanisms between neuroinflammation and NTDs remain largely unclear. In this study, we utilized integrated multi-omics analysis to explore the role of neuroinflammation in NTDs and identify potential prenatal diagnostic markers using a murine model. METHODS: Nine public datasets from Gene Expression Omnibus (GEO) and ArrayExpress were mined using integrated multi-omics analysis to characterize the molecular landscape associated with neuroinflammation in NTDs. Special attention was given to the involvement of macrophages in neuroinflammation within amniotic fluid, as well as the dynamics of macrophage polarization and their interactions with neural cells at single-cell resolution. We also used qPCR assay to validate the key TFs and candidate prenatal diagnostic genes identified through the integrated analysis in a retinoic acid-induced NTDs mouse model. RESULTS: Our analysis indicated that neuroinflammation is a critical pathological feature of NTDs, regulated both transcriptionally and epigenetically within central nervous system tissues. Key alterations in gene expression and pathways highlighted the crucial role of STATs molecules in the JAK-STAT signaling pathway in regulating NTDs-associated neuroinflammation. Furthermore, single-cell resolution analysis revealed significant polarization of macrophages and their interaction with neural cells in amniotic fluid, underscoring their central role in mediating neuroinflammation associated with NTDs. Finally, we identified a set of six potential prenatal diagnostic genes, including FABP7, CRMP1, SCG3, SLC16A10, RNASE6 and RNASE1, which were subsequently validated in a murine NTDs model, indicating their promise as prospective markers for prenatal diagnosis of NTDs. CONCLUSIONS: Our study emphasizes the pivotal role of neuroinflammation in the progression of NTDs and underlines the potential of specific inflammatory and neural markers as novel prenatal diagnostic tools. These findings provide important clues for further understanding the underlying mechanisms between neuroinflammation and NTDs, and offer valuable insights for the future development of prenatal diagnostics.


Assuntos
Multiômica , Defeitos do Tubo Neural , Gravidez , Feminino , Animais , Camundongos , Doenças Neuroinflamatórias , Estudos Prospectivos , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/induzido quimicamente , Sistema Nervoso Central/patologia
4.
J Cell Mol Med ; 28(6): e18135, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429900

RESUMO

Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Neoplasias Pulmonares/genética , Regulação para Cima/genética
5.
Int J Biol Macromol ; 265(Pt 1): 130713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471612

RESUMO

Rapeseed-derived peptides (RPPs) can maintain the homeostasis of human blood glucose by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) and activating the calcium-sensing receptor (CaSR). However, these peptides are susceptible to hydrolysis in the gastrointestinal tract. To enhance the therapeutic potential of these peptides, we developed a chitosan/sodium alginate-based nanocarrier to encapsulate two RPP variants, rapeseed-derived cruciferin peptide (RCPP) and rapeseed-derived napin peptide (RNPP). A convenient three-channel device was employed to prepare chitosan (CS)/sodium alginate (ALG)-RPPs nanoparticles (CS/ALG-RPPs) at a ratio of 1:3:1 for CS, ALG, and RPPs. CS/ALG-RPPs possessed optimal encapsulation efficiencies of 90.7 % (CS/ALG-RNPP) and 91.4 % (CS/ALG-RCPP), with loading capacities of 15.38 % (CS/ALG-RNPP) and 16.63 % (CS/ALG-RCPP) at the specified ratios. The electrostatic association between CS and ALG was corroborated by zeta potential and near infrared analysis. 13C NMR analysis verified successful RPPs loading, with CS/ALG-RNPP displaying superior stability. Pharmacokinetics showed that both nanoparticles were sustained release and transported irregularly (0.43 < n < 0.85). Compared with the control group, CS/ALG-RPPs exhibited significantly increased glucose tolerance, serum GLP-1 (Glucagon-like peptide 1) content, and CaSR expression which play pivotal roles in glucose homeostasis (*p < 0.05). These findings proposed that CS/ALG-RPPs hold promise in achieving sustained release within the intestinal epithelium, thereby augmenting the therapeutic efficacy of targeted peptides.


Assuntos
Brassica napus , Quitosana , Nanopartículas , Humanos , Quitosana/química , Portadores de Fármacos/química , Preparações de Ação Retardada , Brassica napus/metabolismo , Alginatos/química , Nanopartículas/química , Glucose , Peptídeos
6.
ACS Appl Mater Interfaces ; 16(12): 14489-14502, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478962

RESUMO

Multimodal tumor therapy with nanotechnology is an effective and integrative strategy to overcome the limitations of therapeutic efficacy and possible side effects associated with monotherapy. However, the construction of multimodal treatment nanoplatforms often involves various functional components, leading to certain challenges, such as time-consuming synthesis processes, low product yield, and inadequate biocompatibility. To address these issues, we have developed a straightforward method for preparing ultrathin Cu9S5 nanosheets (NSs) with surface defects for photothermal/photodynamic/chemodynamic therapy. The ultrathin morphology of the Cu9S5 NSs (with 2-3 nm) not only confers excellent biocompatibility but also enables broad-spectrum absorption with a remarkable photothermal conversion efficiency (58.96%) under 1064 nm laser irradiation. Moreover, due to the presence of a S vacancy, these Cu9S5 NSs exhibit favorable enzyme-like properties, including reactive oxygen species generation and glutathione consumption, particularly under laser irradiation. The efficacy of related tumor therapy and antibacterial treatment is significantly enhanced by the synergistic activation of photothermal/photodynamic/chemodynamic therapy through 1064 nm laser irradiation, as demonstrated by both in vitro and in vivo experiments. This study presents a novel strategy for multimodal tumor therapy with the prepared ultrathin Cu9S5 NSs, which holds promising pathways for photodynamic therapy in the NIR-II region.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico , Terapia Combinada , Fototerapia , Enxofre , Linhagem Celular Tumoral
7.
Immunity ; 57(4): 876-889.e11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38479384

RESUMO

Concentrations of the secondary bile acid, deoxycholic acid (DCA), are aberrantly elevated in colorectal cancer (CRC) patients, but the consequences remain poorly understood. Here, we screened a library of gut microbiota-derived metabolites and identified DCA as a negative regulator for CD8+ T cell effector function. Mechanistically, DCA suppressed CD8+ T cell responses by targeting plasma membrane Ca2+ ATPase (PMCA) to inhibit Ca2+-nuclear factor of activated T cells (NFAT)2 signaling. In CRC patients, CD8+ T cell effector function negatively correlated with both DCA concentration and expression of a bacterial DCA biosynthetic gene. Bacteria harboring DCA biosynthetic genes suppressed CD8+ T cells effector function and promoted tumor growth in mice. This effect was abolished by disrupting bile acid metabolism via bile acid chelation, genetic ablation of bacterial DCA biosynthetic pathway, or specific bacteriophage. Our study demonstrated causation between microbial DCA metabolism and anti-tumor CD8+ T cell response in CRC, suggesting potential directions for anti-tumor therapy.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Ácidos e Sais Biliares , Ácido Desoxicólico/farmacologia , Linfócitos T CD8-Positivos
8.
Nat Cancer ; 5(4): 673-690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347143

RESUMO

Molecular profiling guides precision treatment of breast cancer; however, Asian patients are underrepresented in publicly available large-scale studies. We established a comprehensive multiomics cohort of 773 Chinese patients with breast cancer and systematically analyzed their genomic, transcriptomic, proteomic, metabolomic, radiomic and digital pathology characteristics. Here we show that compared to breast cancers in white individuals, Asian individuals had more targetable AKT1 mutations. Integrated analysis revealed a higher proportion of HER2-enriched subtype and correspondingly more frequent ERBB2 amplification and higher HER2 protein abundance in the Chinese HR+HER2+ cohort, stressing anti-HER2 therapy for these individuals. Furthermore, comprehensive metabolomic and proteomic analyses revealed ferroptosis as a potential therapeutic target for basal-like tumors. The integration of clinical, transcriptomic, metabolomic, radiomic and pathological features allowed for efficient stratification of patients into groups with varying recurrence risks. Our study provides a public resource and new insights into the biology and ancestry specificity of breast cancer in the Asian population, offering potential for further precision treatment approaches.


Assuntos
Povo Asiático , Neoplasias da Mama , Receptor ErbB-2 , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Feminino , Povo Asiático/genética , Receptor ErbB-2/genética , Mutação , Proteômica/métodos , Perfilação da Expressão Gênica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Pessoa de Meia-Idade , China/epidemiologia , Ferroptose/genética , Adulto , Metabolômica/métodos , Transcriptoma , Biomarcadores Tumorais/genética , População do Leste Asiático
9.
Mater Today Bio ; 25: 100960, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38322658

RESUMO

Chronic inflammation can delay wound healing, eventually leading to tissue necrosis and even cancer. Developing real-time intelligent inflammation monitoring and treatment to achieve effective wound management is important to promote wound healing. In this study, a smart multifunctional hydrogel (Hydrogel@Au NCs&DG) was proposed to monitor and treat the wound inflammation. It was prepared by mixing 3-carboxy-phenylboronic acid modified chitosan (CS-cPBA), ß-glycerophosphate (ß-GP), albumin-protected gold nanoclusters (BSA-Au NCs), and dipotassium glycyrrhizinate (DG) about 10 s. In this hydrogel, CS-cPBA and ß-GP are crosslinked together by boric acid ester bond and hydrogen bond to form the main hydrogel network, endowing the hydrogel with self-healing and injectable properties to adapt irregular wounds. Importantly, the as-prepared hydrogel with good biocompatibility and excellent adhesion property could directly determine the H2O2 to monitor the wound microenvironment by visible fluorescence change of BSA-Au NCs and then guide the frequency of dressing change to eliminate inflammation. The results demonstrated that the as-prepared smart hydrogel could be expected to serve as an intelligent wound dressing to promote inflammation-infected wound healing.

10.
BMC Gastroenterol ; 24(1): 79, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383296

RESUMO

BACKGROUND: A number of observational studies indicate that insomnia is linked to inflammatory digestive diseases (IDDs). However, the definite relationship between insomnia and IDDs remains unclear. METHODS: We obtained the publicly available data from genome-wide association studies (GWAS) to conduct two-sample Mendelian randomization (MR) for association assessment. Five MR analysis methods were used to calculate the odds ratio (OR) and effect estimate, and the heterogeneity and pleiotropy tests were performed to evaluate the robustness of the variable instruments (IVs). RESULTS: One exposure and twenty outcome datasets based on European populations were included in this study. Using the inverse variance weighted method, we found insomnia was closely correlated with esophageal ulcer (OR = 1.011, 95%CI = 1.004-1.017, p = 0.001) and abdominal pain (effect estimate = 1.016, 95%CI = 1.005-1.026, p = 0.003). Suggestive evidence of a positively association was observed between insomnia and duodenal ulcer (OR = 1.006, 95%CI = 1.002-1.011, p = 0.009), gastric ulcer (OR = 1.008, 95%CI = 1.001-1.014, p = 0.013), rectal polyp (OR = 1.005, 95%CI = 1.000-1.010, p = 0.034), haemorrhoidal disease (OR = 1.242, 95%CI = 1.004-1.535, p = 0.045) and monocyte percentage (effect estimate = 1.151, 95%CI = 1.028-1.288, p = 0.014). No correlations were observed among other IDDs, phenotypes and biomarkers. CONCLUSIONS: Our MR study assessed the relationship between insomnia and IDDs/phenotypes/biomarkers in depth and revealed potential associations between insomnia and ulcers of the esophagus and abdominal pain.


Assuntos
Enteropatias , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Biomarcadores , Dor Abdominal/genética
11.
Virulence ; 15(1): 2306719, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38251714

RESUMO

The arginine deiminase system (ADS) has been identified in various bacteria and functions to supplement energy production and enhance biological adaptability. The current understanding of the regulatory mechanism of ADS and its effect on bacterial pathogenesis is still limited. Here, we found that the XRE family transcriptional regulator XtrSs negatively affected Streptococcus suis virulence and significantly repressed ADS transcription when the bacteria were incubated in blood. Electrophoretic mobility shift (EMSA) and lacZ fusion assays further showed that XtrSs directly bind to the promoter of ArgR, an acknowledged positive regulator of bacterial ADS, to repress ArgR transcription. Moreover, we provided compelling evidence that S. suis could utilize arginine via ADS to adapt to acid stress, while ΔxtrSs enhanced this acid resistance by upregulating the ADS operon. Moreover, whole ADS-knockout S. suis increased arginine and antimicrobial NO in the infected macrophage cells, decreased intracellular survival, and even caused significant attenuation of bacterial virulence in a mouse infection model, while ΔxtrSs consistently presented the opposite results. Our experiments identified a novel ADS regulatory mechanism in S. suis, whereby XtrSs regulated ADS to modulate NO content in macrophages, promoting S. suis intracellular survival. Meanwhile, our findings provide a new perspective on how Streptococci evade the host's innate immune system.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Camundongos , Hidrolases/genética , Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrófagos , Arginina , Infecções Estreptocócicas/microbiologia , Regulação Bacteriana da Expressão Gênica
12.
HGG Adv ; 5(1): 100256, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37981762

RESUMO

In this study, we report on mosaic variegated aneuploidy (MVA) syndrome with tetraploidy and predisposition to infertility in a family. Sequencing analysis identified that the CEP192 biallelic variants (c.1912C>T, p.His638Tyr and c.5750A>G, p.Asn1917Ser) segregated with microcephaly, short stature, limb-extremity dysplasia, and reduced testicular size, while CEP192 monoallelic variants segregated with infertility and/or reduced testicular size in the family. In 1,264 unrelated patients, variant screening for CEP192 identified a same variant (c.5750A>G, p.Asn1917Ser) and other variants significantly associated with infertility. Two lines of Cep192 mice model that are equivalent to human variants were generated. Embryos with Cep192 biallelic variants arrested at E7 because of cell apoptosis mediated by MVA/tetraploidy cell acumination. Mice with heterozygous variants replicated the predisposition to male infertility. Mouse primary embryonic fibroblasts with Cep192 biallelic variants cultured in vitro showed abnormal morphology, mitotic arresting, and disruption of spindle formation. In patient epithelial cells with biallelic variants cultured in vitro, the number of cells arrested during the prophase increased because of the failure of spindle formation. Accordingly, we present mutant CEP192, which is a link for the MVA syndrome with tetraploidy and the predisposition to male infertility.


Assuntos
Transtornos Cromossômicos , Infertilidade Masculina , Humanos , Masculino , Camundongos , Animais , Tetraploidia , Aneuploidia , Suscetibilidade a Doenças , Infertilidade Masculina/genética , Proteínas Cromossômicas não Histona/genética , Mosaicismo
13.
J Minim Invasive Gynecol ; 31(3): 227-236, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147937

RESUMO

STUDY OBJECTIVE: To develop a noninvasive predictive model based on patients with infertility for identifying minimal or mild endometriosis. DESIGN: A retrospective cohort study. SETTING: This study was conducted at a tertiary referral center. PATIENTS: A total of consecutive 1365 patients with infertility who underwent laparoscopy between January 2013 and August 2020 were divided into a training set (n = 910) for developing the predictive model and a validation set (n = 455) to confirm the model's prediction efficiency. The patients were randomly assigned in a 2:1 ratio. INTERVENTIONS: Sensitivities, specificities, area under the curve, the Hosmer-Lemeshow goodness of fit test, Net Reclassification Improvement index, and Integrated Discrimination Improvement index were evaluated in the training set to select the optimum model. In the validation set, the model's discriminations, calibrations, and clinical use were tested for validation. MEASUREMENTS AND MAIN RESULTS: In the training set, there were 587 patients with minimal or mild endometriosis and 323 patients without endometriosis. The combination of clinical parameters in the model was evaluated for both statistical and clinical significance. The best-performing model ultimately included body mass index, dysmenorrhea, dyspareunia, uterosacral tenderness, and serum cancer antigen 125 (CA-125). The nomogram based on this model demonstrated sensitivities of 87.7% and 93.3%, specificities of 68.6% and 66.4%, and area under the curve of 0.84 (95% confidence interval 0.81-0.87) and 0.85 (95% confidence interval 0.80-0.89) for the training and validation sets, respectively. Calibration curves and decision curve analyses also indicated that the model had good calibration and clinical value. Uterosacral tenderness emerged as the most valuable predictor. CONCLUSION: This study successfully developed a predictive model with high accuracy in identifying infertile women with minimal or mild endometriosis based on clinical characteristics, signs, and cost-effective blood tests. This model would assist clinicians in screening infertile women for minimal or mild endometriosis, thereby facilitating early diagnosis and treatment.


Assuntos
Endometriose , Infertilidade Feminina , Laparoscopia , Feminino , Humanos , Infertilidade Feminina/diagnóstico , Infertilidade Feminina/etiologia , Endometriose/complicações , Endometriose/diagnóstico , Endometriose/cirurgia , Estudos Retrospectivos , Dismenorreia
14.
Foods ; 12(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38137189

RESUMO

Curcumin exhibits antioxidant and antitumor properties, but its poor chemical stability limits its application. Insoluble peptide precipitates formed by proteolysis of rice glutelin are usually discarded, resulting in resource waste. The coupled treatment of heat-assisted pH shifting and compounded chitosan (CS) was used to fabricate rice peptide aggregate-chitosan complexes (RPA-CS). The structure, interfacial behavior, emulsion properties, and digestibility of curcumin-loaded RPA-CS Pickering emulsions were investigated. Increasing the CS concentration led to lower interfacial tension but larger particle size, and the three-phase contact angle of the RPA-CS complexes approached 90°. Quartz crystal microbalance with dissipation (QCM-D) indicated that RPA-CS complexes with 6 g·kg-1 of CS (RPA-CS6) had the highest K1 (0.592 × 106 Hz-1) and K4 (0.487 × 106 Hz-1), suggesting that the softest interfacial layers were formed. The solid-liquid balance of RPA-RPA-CS emulsions was lower than 0.5, declaring that they had more elastic behavior than that of RPA emulsions. RPA-RPA-CS4-and RPA-CS6 emulsions had better storage stability, lower FFA release (79.8% and 76.3%, respectively), and higher curcumin bioaccessibility (65.2% and 68.2%, respectively) than RPA emulsions. This study showed that a low-value insoluble rice peptide precipitate could be used as a valuable emulsifier in foods, which may increase the economics and sustainability of the food supply.

15.
Biol Trace Elem Res ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38103107

RESUMO

Peony seed is an excellent oil crop, and peony seed oil is rich in unsaturated fatty acids needed by the human body. In this study, inductively coupled plasma mass spectrometry (ICP-MS), fingerprint, and chemometrics, the correlation between the content of inorganic elements in oil peony seeds, their origins, and varieties were investigated. Meanwhile, estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI), and carcinogenic risks (CR) were combined to evaluate the comprehensive health risks of heavy metals in peony seed oil. The results showed that the difference in the content of inorganic elements could identify the varieties of oil peony seeds. Sr, K, Ca, V, Al, Fe, Cu, Ba, As, Ga, Co, and Rb were the characteristic inorganic elements that played a role in identification. In addition, The THQs and HIs (< 1) for non-carcinogenic elements indicated no risk. The CRs indicated that the carcinogenic harm was negligible. The study concluded that three varieties of peony seed oil would not pose any health hazard. It provided an effective comprehensive method for the identification of oil peony seeds and predicted the potential health risks of edible peony seed oil, providing a reference for the development and consumption of peony seed oil food.

16.
iScience ; 26(11): 108192, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026157

RESUMO

Natural killer (NK)/T cell lymphoma (NKTCL) is a rare subtype of Epstein-Barr virus (EBV)-associated non-Hodgkin lymphoma characterized by poor clinical outcomes. It is more common in East Asian and Latin American countries. Despite the introduction of asparaginase/pegaspargase-based chemotherapy, the prognosis of patients with advanced NKTCL needs to be improved, and few salvage treatment options are available for relapsed/refractory patients who fail chemotherapy. Although many unknowns remain, novel treatment strategies to further improve outcomes are urgently needed. Immunotherapy has emerged and shown favorable antitumor activity in NKTCL, including monoclonal antibodies targeting immune checkpoint inhibitors, other receptors on the cellular membrane, and cellular immunotherapy, which could enhance immune cells attack on tumor cells. In this review, we provide an overview of recent immunotherapy in NKTCL, focusing on programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte-associated protein 4 (CTLA-4), chimeric antigen receptor (CAR) T cells, EBV-specific cytotoxic T lymphocytes, immunomodulatory agents, and other targeted agents, as well as the current progress and challenges in the field.

17.
Int J Gen Med ; 16: 5449-5465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021066

RESUMO

Background: Lung adenocarcinoma (LUAD) has high morbidity and mortality. Current studies indicate nucleoporin 107 (NUP107) is involved in the construction of nuclear pore complex, and NUP107 overexpression contributes to the growth and development in most types of cancers, but its effect in LUAD has not been elucidated. Methods: Differences in NUP107 expression were investigated using the Cancer Genome Atlas (TCGA) and multiple Gene Expression Omnibus (GEO) data sets. Enrichment analysis were implemented to probe the NUP107 function. The association of NUP107 with the degree of immune cell infiltration was investigated by the TIMER database, single-sample gene set enrichment analysis (ssGSEA), and ESTIMATE. The association of NUP107 expression with tumor mutation burden (TMB), TP53, and immune checkpoint was analyzed. Single-cell RNA sequencing data were used to detect NUP107 expression in different cell clusters. Finally, we performed real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) to prove the difference of NUP107 expression. Results: NUP107 was overexpressed in LUAD and mainly expressed in cancer stem cell (CSC). Overexpression of NUP107 in LUAD suggested a poorer prognosis. Functional enrichment analysis pointed out that NUP107 was mainly linked to the regulation of cell cycle. Both immune cell infiltration and TMB were found to be in connection with NUP107. Cases in the group with high NUP107 expression had poorer immune infiltration, but had higher expression of immune checkpoints, TMB, and proportion of TP53 mutations. Conclusion: NUP107 is a sensitive diagnostic and prognostic factor for LUAD and may be involved in tumor progression through its effects on cell cycle and immune infiltration.

18.
ACS Cent Sci ; 9(9): 1758-1767, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37780359

RESUMO

Heterocyclic scaffolds are commonly found in numerous biologically active molecules, therapeutic agents, and agrochemicals. To probe chemical space around heterocycles, many powerful molecular editing strategies have been devised. Versatile C-H functionalization strategies allow for peripheral modifications of heterocyclic motifs, often being specific and taking place at multiple sites. The past few years have seen the quick emergence of exciting "single-atom skeletal editing" strategies, through one-atom deletion or addition, enabling ring contraction/expansion and structural diversification, as well as scaffold hopping. The construction of heterocycles via deconstruction of simple heterocycles is unknown. Herein, we disclose a new molecular editing method which we name the skeletal recasting strategy. Specifically, by tapping on the 1,3-dipolar property of azoalkenes, we recast simple pyrroles to fully substituted pyrroles, through a simple phosphoric acid-promoted one-pot reaction consisting of dearomative deconstruction and rearomative reconstruction steps. The reaction allows for easy access to synthetically challenging tetra-substituted pyrroles which are otherwise difficult to synthesize. Furthermore, we construct N-N axial chirality on our pyrrole products, as well as accomplish a facile synthesis of the anticancer drug, Sutent. The potential application of this method to other heterocycles has also been demonstrated.

19.
Cell Biosci ; 13(1): 194, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875976

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA